Juvix imports
module prelude;
import Stdlib.Trait open public;
import Stdlib.Trait.Ord open using {Ordering; mkOrd; Equal; isEqual} public;
import Stdlib.Trait.Eq open using {==} public;
import Stdlib.Debug.Fail open using {failwith};
import Stdlib.Data.Fixity open public;
Juvix Specs Prelude¶
The following are frequent and basic abstractions used in the Anoma specification.
Combinators¶
import Stdlib.Function open using {
<<;
>>;
const;
id;
flip;
<|;
|>;
iterate;
>->;
};
Useful Type Classes¶
Functor
¶
import Stdlib.Trait.Functor.Polymorphic as Functor;
Applicative
¶
import Stdlib.Trait.Applicative open using {Applicative; mkApplicative} public;
open Applicative public;
Monad
¶
import Stdlib.Trait.Monad open using {Monad; mkMonad} public;
open Monad public;
join
¶
Join function for monads
join {M : Type -> Type} {A} {{Monad M}} (mma : M (M A)) : M A := bind mma id;
Bifunctor
¶
Two-argument functor
trait
type Bifunctor (F : Type -> Type -> Type) :=
mkBifunctor@{
bimap {A B C D} : (A -> C) -> (B -> D) -> F A B -> F C D;
};
AssociativeProduct
¶
Product with associators
trait
type AssociativeProduct (F : Type -> Type -> Type) :=
mkAssociativeProduct@{
assocLeft {A B C} : F A (F B C) -> F (F A B) C;
assocRight {A B C} : F (F A B) C -> F A (F B C);
};
CommutativeProduct
¶
Product with commuters
trait
type CommutativeProduct (F : Type -> Type -> Type) :=
mkCommutativeProduct@{
swap {A B} : F A B -> F B A;
};
UnitalProduct
¶
Product with units
trait
type UnitalProduct U (F : Type -> Type -> Type) :=
mkUnitalProduct@{
unitLeft {A} : A -> F U A;
unUnitLeft {A} : F U A -> A;
unitRight {A} : A -> F A U;
unUnitRight {A} : F A U -> A;
};
Traversable
¶
Traversable type class.
trait
type Traversable (T : Type -> Type) :=
mkTraversable@{
{{functorI}} : Functor T;
{{foldableI}} : Polymorphic.Foldable T;
sequence
: {F : Type -> Type}
-> {A : Type}
-> {{Applicative F}}
-> T (F A)
-> F (T A);
traverse
: {F : Type -> Type}
-> {A B : Type}
-> {{Applicative F}}
-> (A -> F B)
-> T A
-> F (T B);
};
Bool¶
The type Bool
represents boolean values (true
or false
). Used for logical operations and conditions.
import Stdlib.Data.Bool as Bool open using {
Bool;
true;
false;
&&;
||;
not;
or;
and;
} public;
For example,
verdad : Bool := true;
xor
¶
Exlusive or
xor (a b : Bool) : Bool :=
if
| a := not b
| else := b;
nand
¶
Not and
nand (a b : Bool) : Bool := not (and a b);
nor
¶
Not or
nor (a b : Bool) : Bool := not (or a b);
Nat¶
The type Nat
represents natural numbers (non-negative integers). Used for
counting and indexing.
import Stdlib.Data.Nat as Nat open using {
Nat;
zero;
suc;
natToString;
+;
sub;
*;
div;
mod;
==;
<=;
>;
<;
min;
max;
} public;
For example,
ten : Nat := 10;
pred
¶
Predecessor function for natural numbers.
pred (n : Nat) : Nat :=
case n of
| zero := zero
| suc k := k;
boolToNat
¶
Convert boolean to a Bool to a Nat in the standard way of circuits.
boolToNat (b : Bool) : Nat :=
if
| b := 0
| else := 1;
isZero
¶
Check if a natural number is zero.
isZero (n : Nat) : Bool :=
case n of
| zero := true
| suc k := false;
isEven
and isOdd
¶
Parity checking functions
isEven (n : Nat) : Bool := mod n 2 == 0;
isOdd (n : Nat) : Bool := not (isEven n);
foldNat
¶
Fold over natural numbers.
terminating
foldNat {B} (z : B) (f : Nat -> B -> B) (n : Nat) : B :=
case n of
| zero := z
| suc k := f k (foldNat z f k);
iter
¶
Iteration of a function.
iter {A} (f : A -> A) (n : Nat) (x : A) : A := foldNat x \{_ y := f y} n;
exp
¶
The exponentiation function.
exp (base : Nat) (exponent : Nat) : Nat :=
iter \{product := base * product} exponent 1;
factorial
¶
The factorial function.
factorial : Nat -> Nat := foldNat 1 \{k r := suc k * r};
gcd
¶
Greatest common divisor function.
terminating
gcd (a b : Nat) : Nat :=
case b of
| zero := a
| suc _ := gcd b (mod a b);
lcm
¶
Least common multiple function.
lcm (a b : Nat) : Nat :=
case b of
| zero := zero
| suc _ :=
case a of
| zero := zero
| suc _ := div (a * b) (gcd a b);
String¶
The type String
represents sequences of characters. Used for text and
communication.
import Stdlib.Data.String as String open using {String; ++str} public;
For example,
hello : String := "Hello, World!";
String Comparison¶
axiom stringCmp : String -> String -> Ordering;
instance
StringOrd : Ord String :=
mkOrd@{
cmp := stringCmp;
};
ByteString¶
ByteString : Type := String;
A basic type for representing binary data.
emptyByteString : ByteString := "";
Unit¶
The type Unit
represents a type with a single value. Often used when a
function does not return any meaningful value.
import Stdlib.Data.Unit as Unit open using {Unit; unit} public;
For example,
unitValue : Unit := unit;
trivial
¶
Unique function to the unit. Universal property of terminal object.
trivial {A} : A -> Unit := const unit;
Empty¶
The type Empty
represents a type with a single value. Often used when a
function does not return any meaningful value.
axiom Empty : Type;
explode
¶
Unique function from empty. Universal property of initial object.
axiom explode {A} : Empty -> A;
Pair A B¶
The type Pair A B
represents a tuple containing two elements of types A
and
B
. Useful for grouping related values together.
import Stdlib.Data.Pair as Pair;
open Pair using {Pair} public;
open Pair using {,};
import Stdlib.Data.Pair as Pair open using {ordProductI; eqProductI} public;
import Stdlib.Data.Fixity open;
syntax operator mkPair none;
syntax alias mkPair := ,;
For example,
pair : Pair Nat Bool := mkPair 42 true;
fst
and snd
¶
Projections
fst {A B} : Pair A B -> A
| (mkPair a _) := a;
snd {A B} : Pair A B -> B
| (mkPair _ b) := b;
PairCommutativeProduct
¶
Swap components
instance
PairCommutativeProduct : CommutativeProduct Pair :=
mkCommutativeProduct@{
swap := \{p := mkPair (snd p) (fst p)};
};
PairAssociativeProduct
¶
Pair associations
instance
PairAssociativeProduct : AssociativeProduct Pair :=
mkAssociativeProduct@{
assocLeft :=
\{p :=
let
pbc := snd p;
in mkPair (mkPair (fst p) (fst pbc)) (snd pbc)};
assocRight :=
\{p :=
let
pab := fst p;
in mkPair (fst pab) (mkPair (snd pab) (snd p))};
};
PairUnitalProduct
¶
Unit maps for pairs and units
instance
PairUnitalProduct : UnitalProduct Unit Pair :=
mkUnitalProduct@{
unitLeft := \{a := mkPair unit a};
unUnitLeft := snd;
unitRight := \{a := mkPair a unit};
unUnitRight := \{{A} := fst};
};
PairBifunctor
¶
Map functions over pairs
instance
PairBifunctor : Bifunctor Pair :=
mkBifunctor@{
bimap := \{f g p := mkPair (f (fst p)) (g (snd p))};
};
fork
¶
Universal property of pairs
fork {A B C} (f : C -> A) (g : C -> B) (c : C) : Pair A B := mkPair (f c) (g c);
Result A B¶
The Result A B
type represents either a success with a value of ok x
with
x
of type A
or an error with value error e
with e
of type B
.
import Stdlib.Data.Result.Base as Result;
open Result using {Result; ok; error} public;
Either A B¶
The type Either A B
, or sum type of A
and B
, represents a value of type
A
or B
. It is equivalent to Result A B
, however, the meaning of the values
is different. There is no such thing as an error or success value in the
Either
type, instead the values are either left a
of type A
or right b
of type B
.
syntax alias Either := Result;
syntax alias left := error;
syntax alias right := ok;
For example,
thisString : Either String Nat := left "Error!";
thisNumber : Either String Nat := right 42;
isLeft
and isRight
¶
Check components of either.
isLeft {A B} (e : Either A B) : Bool :=
case e of
| left _ := true
| right _ := false;
isRight {A B} (e : Either A B) : Bool :=
case e of
| left _ := false
| right _ := true;
fromLeft
¶
Get left element (with default)
fromLeft {A B} (e : Either A B) (d : A) : A :=
case e of
| left x := x
| right _ := d;
fromRight
¶
Get right element (with default)
fromRight {A B} (e : Either A B) (d : B) : B :=
case e of
| left _ := d
| right x := x;
EitherCommutativeProduct
¶
Swap elements
swapEither {A B} (e : Either A B) : Either B A :=
case e of
| left x := right x
| right x := left x;
instance
EitherCommutativeProduct : CommutativeProduct Either :=
mkCommutativeProduct@{
swap := swapEither;
};
EitherBifunctor
¶
Map onto elements of either
eitherBimap {A B C D} (f : A -> C) (g : B -> D) (e : Either A B) : Either C D :=
case e of
| left a := left (f a)
| right b := right (g b);
instance
EitherBifunctor : Bifunctor Either :=
mkBifunctor@{
bimap := eitherBimap;
};
EitherUnitalProduct
¶
Unit maps for Either and Empty
unUnitLeftEither
¶
unUnitLeftEither {A} (e : Either Empty A) : A :=
case e of
| left x := explode x
| right x := x;
unUnitRightEither
¶
unUnitRightEither {A} (e : Either A Empty) : A :=
case e of
| left x := x
| right x := explode x;
EitherUnitalProduct
¶
Unit maps for Either and Empty
instance
EitherUnitalProduct : UnitalProduct Empty Either :=
mkUnitalProduct@{
unitLeft := right;
unUnitLeft := unUnitLeftEither;
unitRight := \{{A} := left};
unUnitRight := unUnitRightEither;
};
fuse
¶
Universal property of coproduct
fuse {A B C} (f : A -> C) (g : B -> C) (e : Either A B) : C :=
case e of
| left x := f x
| right x := g x;
EitherAssociativeProduct
¶
Association functions for either
assocLeftEither
¶
assocLeftEither {A B C} (e : Either A (Either B C)) : Either (Either A B) C :=
case e of
| left x := left (left x)
| right ebc :=
case ebc of
| left y := left (right y)
| right z := right z;
assocRightEither
¶
assocRightEither {A B C} (e : Either (Either A B) C) : Either A (Either B C) :=
case e of
| left eab :=
case eab of {
| left x := left x
| right y := right (left y)
}
| right z := right (right z);
EitherAssociativeProduct
¶
instance
EitherAssociativeProduct : AssociativeProduct Either :=
mkAssociativeProduct@{
assocLeft := assocLeftEither;
assocRight := assocRightEither;
};
Option A
¶
The type Option A
represents an optional value of type A
. It can be either
Some A
(containing a value) or None
(no value). This type is an alias for
Maybe A
from the standard library.
import Stdlib.Data.Maybe as Maybe;
open Maybe using {Maybe; just; nothing};
syntax alias Option := Maybe;
syntax alias some := just;
syntax alias none := nothing;
isNone
¶
Check if an optional value is none
:
isNone {A} (x : Option A) : Bool :=
case x of
| none := true
| some _ := false;
isSome
¶
Check if an optional value is some
:
isSome {A} (x : Option A) : Bool := not (isNone x);
fromOption
¶
Extract the value from an Option
term:
fromOption {A} (x : Option A) (default : A) : A :=
case x of
| none := default
| some x := x;
option
¶
Map over option with default
option {A B} (o : Option A) (default : B) (f : A -> B) : B :=
case o of
| none := default
| some x := f x;
filterOption
¶
Filter option according to predicate
filterOption {A} (p : A -> Bool) (opt : Option A) : Option A :=
case opt of
| none := none
| some x :=
if
| p x := some x
| else := none;
List A¶
The type List A
represents a sequence of elements of type A
. Used for collections and ordered data.
import Stdlib.Data.List as List open using {
List;
nil;
::;
isElement;
head;
tail;
length;
take;
drop;
++;
reverse;
any;
all;
zip;
} public;
For example,
numbers : List Nat := 1 :: 2 :: 3 :: nil;
niceNumbers : List Nat := [1; 2; 3];
findIndex
¶
Get the first index of an element satisfying a predicate if such an index exists and none, otherwise.
findIndex {A} (predicate : A -> Bool) : List A -> Option Nat
| nil := none
| (x :: xs) :=
if
| predicate x := some zero
| else :=
case findIndex predicate xs of
| none := none
| some i := some (suc i);
last
¶
Get last element of a list
last {A} (lst : List A) (default : A) : A := head default (reverse lst);
most
¶
Get list with last element dropped
most {A} (lst : List A) : List A := tail (reverse lst);
snoc
¶
Prepend element to a list
snoc {A} (xs : List A) (x : A) : List A := xs ++ [x];
uncons
¶
Split one layer of list
uncons {A} : List A -> Option (Pair A (List A))
| nil := none
| (x :: xs) := some (mkPair x xs);
unsnoc
¶
Split one layer of list from the end
unsnoc {A} : List A -> Option (Pair (List A) A)
| nil := none
| (x :: xs) := some (mkPair (most (x :: xs)) (last xs x));
unfold
¶
Unfold a list, layerwise
terminating
unfold {A B} (step : B -> Option (Pair A B)) (seed : B) : List A :=
case step seed of
| none := nil
| some (x, seed') := x :: unfold step seed';
unzip
¶
Unzip a list of pairs into two lists
terminating
unzip {A B} (xs : List (Pair A B)) : Pair (List A) (List B) :=
case xs of
| nil := mkPair nil nil
| p :: ps :=
let
unzipped := unzip ps;
in mkPair (fst p :: fst unzipped) (snd p :: snd unzipped);
partitionEither
¶
Partition a list
partitionEither {A B} (es : List (Either A B)) : Pair (List A) (List B) :=
foldr
\{e acc :=
case e of
| left a := mkPair (a :: fst acc) (snd acc)
| right b := mkPair (fst acc) (b :: snd acc)}
(mkPair nil nil)
es;
partitionEitherWith
¶
partitionEitherWith
{A B C} (f : C -> Either A B) (es : List C) : Pair (List A) (List B) :=
partitionEither (map f es);
catOptions
¶
Collapse list of options
catOptions {A} : List (Option A) -> List A :=
foldr
\{opt acc :=
case opt of
| none := acc
| some x := x :: acc}
nil;
maximumBy
¶
Get the maximal element of a list.
maximumBy {A B} {{Ord B}} (f : A -> B) (lst : List A) : Option A :=
let
maxHelper :=
\{curr acc :=
case acc of
| none := some curr
| some maxVal :=
if
| f curr > f maxVal := some curr
| else := some maxVal};
in foldr maxHelper none lst;
minimumBy
¶
Get the minimal element of a list.
minimalBy {A B} {{Ord B}} (f : A -> B) (lst : List A) : Option A :=
let
minHelper :=
\{curr acc :=
case acc of
| none := some curr
| some minVal :=
if
| f curr < f minVal := some curr
| else := some minVal};
in foldr minHelper none lst;
traversableListI
¶
Traversable instance for lists
instance
traversableListI : Traversable List :=
mkTraversable@{
sequence
{F : Type -> Type}
{A}
{{appF : Applicative F}}
(xs : List (F A))
: F (List A) :=
let
cons : F A -> F (List A) -> F (List A)
| x acc := liftA2 (::) x acc;
go : List (F A) -> F (List A)
| nil := pure nil
| (x :: xs) := cons x (go xs);
in go xs;
traverse
{F : Type -> Type}
{A B}
{{appF : Applicative F}}
(f : A -> F B)
(xs : List A)
: F (List B) :=
let
cons : A -> F (List B) -> F (List B)
| x acc := liftA2 (::) (f x) acc;
go : List A -> F (List B)
| nil := pure nil
| (x :: xs) := cons x (go xs);
in go xs;
};
chunksOf
¶
Splits a list into chunks of size n
. The last chunk may be smaller than n
if the
length of the list is not divisible by n
.
Example:
- chunksOf 2 [1;2;3;4;5] = [[1;2]; [3;4]; [5]]
terminating
chunksOf {A} : (chunkSize : Nat) -> (list : List A) -> List (List A)
| zero _ := nil
| _ nil := nil
| n xs := take n xs :: chunksOf n (drop n xs);
sliding
¶
Returns all contiguous sublists of size n
. If n
is larger than the list length,
returns empty list. If n
is zero, returns empty list.
Example: - sliding 2 [1;2;3;4] = [[1;2]; [2;3]; [3;4]]
sliding {A} : (windowSize : Nat) -> (list : List A) -> List (List A)
| zero _ := nil
| n xs :=
let
len : Nat := length xs;
terminating
go : List A -> List (List A)
| nil := nil
| ys :=
if
| length ys < n := nil
| else := take n ys :: go (tail ys);
in if
| n > len := nil
| else := go xs;
span
¶
Takes a predicate and a list, and returns a tuple where:
- First element is the longest prefix of the list that satisfies the predicate
- Second element is the remainder of the list
span {A} (p : A -> Bool) : List A -> Pair (List A) (List A)
| nil := mkPair nil nil
| (x :: xs) :=
if
| p x :=
let
(ys1, ys2) := span p xs;
in mkPair (x :: ys1) ys2
| else := mkPair nil (x :: xs);
groupBy
and group
¶
Groups consecutive elements in a list that satisfy a given equality predicate.
Example:
- groupBy (==) [1;1;2;2;2;3;1;1] = [[1;1];[2;2;2];[3];[1;1]]
terminating
groupBy {A} (eq : A -> A -> Bool) : List A -> List (List A)
| nil := nil
| (x :: xs) := case span (eq x) xs of ys1, ys2 := (x :: ys1) :: groupBy eq ys2;
group {A} {{Eq A}} : List A -> List (List A) := groupBy (==);
nubBy
¶
Returns a list with duplicates removed according to the given equivalence function, keeping the first occurrence of each element. Unlike regular ;nub;, this function allows specifying a custom equality predicate.
Examples:
- nubBy ({x y := mod x 3 == mod y 3}) [1;2;3;4;5;6] = [1;2;3]
- nub [1;1;2;2;3;3] = [1;2;3]
nubBy {A} (eq : A -> A -> Bool) : List A -> List A :=
let
elemBy (x : A) : List A -> Bool
| nil := false
| (y :: ys) := eq x y || elemBy x ys;
go : List A -> List A -> List A
| acc nil := reverse acc
| acc (x :: xs) :=
if
| elemBy x acc := go acc xs
| else := go (x :: acc) xs;
in go nil;
nub
¶
nub {A} {{Eq A}} : List A -> List A := nubBy (==);
powerlists
¶
Generate all possible sublists of a list. Each element can either be included or not.
powerlists {A} : List A -> List (List A)
| nil := nil :: nil
| (x :: xs) :=
let
rest : List (List A) := powerlists xs;
withX : List (List A) := map ((::) x) rest;
in rest ++ withX;
Set A
¶
The type Set A
represents a collection of unique elements of type A
. Used
for sets of values.
import Stdlib.Data.Set as Set public;
open Set using {Set; difference; union; eqSetI; ordSetI; isSubset} public;
For example,
uniqueNumbers : Set Nat := Set.fromList [1; 2; 2; 2; 3];
setMap
¶
setMap {A B} {{Ord B}} (f : A -> B) (set : Set A) : Set B :=
Set.fromList (map f (Set.toList set));
setJoin
¶
Collapse a set of sets into a set
setJoin {A} {{Ord A}} (sets : Set (Set A)) : Set A :=
for (acc := Set.empty) (innerSet in sets) {
Set.union acc innerSet
};
disjointUnion
¶
--- Computes the disjoint union of two ;Set;s.
disjointUnion {T} {{Ord T}} (s1 s2 : Set T) : Result (Set T) (Set T) :=
case Set.intersection s1 s2 of
| Set.empty := ok (Set.union s1 s2)
| s := error s;
symmetricDifference
¶
Caclulate the symmetric difference of two sets.
symmetricDifference {A} {{Ord A}} (s1 s2 : Set A) : Set A :=
let
in1not2 := difference s1 s2;
in2not1 := difference s2 s1;
in union in1not2 in2not1;
cartesianProduct
¶
Generate the set of all cartesian products of a set.
cartesianProduct
{A B} {{Ord A}} {{Ord B}} (s1 : Set A) (s2 : Set B) : Set (Pair A B) :=
let
pairsForElement (a : A) : Set (Pair A B) :=
for (acc := Set.empty) (b in s2) {
Set.insert (mkPair a b) acc
};
pairSets : Set (Set (Pair A B)) :=
for (acc := Set.empty) (a in s1) {
Set.insert (pairsForElement a) acc
};
in setJoin pairSets;
powerset
¶
Generate the powerset (set of all subsets) of a set.
powerset {A} {{Ord A}} (s : Set A) : Set (Set A) :=
let
elements := Set.toList s;
subLists := powerlists elements;
in Set.fromList (map Set.fromList subLists);
isProperSubset
¶
Checks if all elements of set1
are in set2
, and that the two sets are not the same.
isProperSubset {A} {{Eq A}} {{Ord A}} (set1 set2 : Set A) : Bool :=
isSubset set1 set2 && not (set1 == set2);
Map K V
¶
The type Map K V
represents a collection of key-value pairs, sometimes called
a dictionary, where keys are of type K
and values are of type V
.
import Stdlib.Data.Map as Map public;
open Map using {Map} public;
For example,
codeToken : Map Nat String := Map.fromList [1, "BTC"; 2, "ETH"; 3, "ANM"];
updateLookupWithKey
¶
Updates a value at a specific key using the update function and returns both the old value (if the key existed) and the updated map.
updateLookupWithKey
{Key Value}
{{Ord Key}}
(updateFn : Key -> Value -> Option Value)
(k : Key)
(map : Map Key Value)
: Pair (Option Value) (Map Key Value) :=
let
oldValue : Option Value := Map.lookup k map;
newMap : Map Key Value :=
case oldValue of
| none := map
| some v :=
case updateFn k v of
| none := Map.delete k map
| some newV := Map.insert k newV map;
in oldValue, newMap;
mapKeys
¶
Maps all keys in the Map to new keys using the provided function. If the mapping function is not injective (maps different keys to the same key), later entries in the map will overwrite earlier ones with the same new key.
mapKeys
{Key1 Key2 Value}
{{Ord Key2}}
(fun : Key1 -> Key2)
(map : Map Key1 Value)
: Map Key2 Value :=
Map.fromList
(for (acc := nil) (k, v in Map.toList map) {
(fun k, v) :: acc
});
restrictKeys
¶
Restrict a map to only contain keys from the given set.
restrictKeys
{Key Value}
{{Ord Key}}
(map : Map Key Value)
(validKeys : Set.Set Key)
: Map Key Value :=
for (acc := Map.empty) (k, v in map) {
if
| Set.isMember k validKeys := Map.insert k v acc
| else := acc
};
withoutKeys
¶
Remove all entries from a map whose keys appear in the given set.
withoutKeys
{Key Value}
{{Ord Key}}
(map : Map Key Value)
(invalidKeys : Set.Set Key)
: Map Key Value :=
for (acc := Map.empty) (k, v in map) {
if
| Set.isMember k invalidKeys := acc
| else := Map.insert k v acc
};
mapPartition
¶
Split a map according to a predicate on values. Returns a pair of maps, (matching, non-matching).
mapPartition
{Key Value}
{{Ord Key}}
(predicate : Value -> Bool)
(map : Map Key Value)
: Pair (Map Key Value) (Map Key Value) :=
for (matching, nonMatching := Map.empty, Map.empty) (k, v in map) {
if
| predicate v := Map.insert k v matching, nonMatching
| else := matching, Map.insert k v nonMatching
};
partitionWithKey
¶
Split a map according to a predicate that can examine both key and value. Returns a pair of maps, (matching, non-matching).
<pre class="highlight"><code class="juvix"><pre class="src-content"><span id="prelude:564"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:564" class="ju-code-link ju-function"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:564" class="ju-code-link ju-function"><span class="ju-function">partitionWithKey</span></a></span></a></span></span><br/> <span class="ju-delimiter">{</span><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:611" class="ju-code-link ju-var"><span class="ju-var">Value</span></a></span><span class="ju-delimiter">}</span><br/> <span class="ju-delimiter">{{</span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Trait/Ord.html#Stdlib.Trait.Ord:1" class="ju-code-link ju-inductive"><span class="ju-inductive">Ord</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span><span class="ju-delimiter">}}</span><br/> <span class="ju-delimiter">(</span><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:612" class="ju-code-link ju-var"><span class="ju-var">predicate</span></a></span> <span class="ju-keyword">:</span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span> <span class="ju-keyword">-></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:611" class="ju-code-link ju-var"><span class="ju-var">Value</span></a></span> <span class="ju-keyword">-></span> <span class="annot"><a href="https://specs.anoma.net/main/Juvix/Builtin/V1/Bool.html#Juvix.Builtin.V1.Bool:1" class="ju-code-link ju-inductive"><span class="ju-inductive">Bool</span></a></span><span class="ju-delimiter">)</span><br/> <span class="ju-delimiter">(</span><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:613" class="ju-code-link ju-var"><span class="ju-var">map</span></a></span> <span class="ju-keyword">:</span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:20" class="ju-code-link ju-inductive"><span class="ju-inductive">Map</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:611" class="ju-code-link ju-var"><span class="ju-var">Value</span></a></span><span class="ju-delimiter">)</span><br/> <span class="ju-keyword">:</span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:1" class="ju-code-link ju-inductive"><span class="ju-inductive">Pair</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:20" class="ju-code-link ju-inductive"><span class="ju-inductive"><span class="ju-delimiter">(</span>Map</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:611" class="ju-code-link ju-var"><span class="ju-var">Value</span></a></span><span class="ju-delimiter">)</span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:20" class="ju-code-link ju-inductive"><span class="ju-inductive"><span class="ju-delimiter">(</span>Map</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:610" class="ju-code-link ju-var"><span class="ju-var">Key</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:611" class="ju-code-link ju-var"><span class="ju-var">Value</span></a></span><span class="ju-delimiter">)</span> <span class="ju-keyword">:=</span><br/> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Trait/Foldable/Monomorphic.html#Stdlib.Trait.Foldable.Monomorphic:11" class="ju-code-link ju-function"><span class="ju-function">for</span></a></span> <span id="prelude:614"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:614" class="ju-code-link ju-var"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:614" class="ju-code-link ju-var"><span class="ju-var"><span class="ju-delimiter">(</span>matching</span></a></span></a></span></span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:2" class="ju-code-link ju-constructor"><span class="ju-constructor">,</span></a></span> <span id="prelude:615"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:615" class="ju-code-link ju-var"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:615" class="ju-code-link ju-var"><span class="ju-var">nonMatching</span></a></span></a></span></span> <span class="ju-keyword">:=</span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:39" class="ju-code-link ju-function"><span class="ju-function">Map<span class="ju-delimiter">.</span>empty</span></a></span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:2" class="ju-code-link ju-constructor"><span class="ju-constructor">,</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:39" class="ju-code-link ju-function"><span class="ju-function">Map<span class="ju-delimiter">.</span>empty</span></a></span><span class="ju-delimiter">)</span> <span id="prelude:616"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:616" class="ju-code-link ju-var"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:616" class="ju-code-link ju-var"><span class="ju-var"><span class="ju-delimiter">(</span>k</span></a></span></a></span></span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:2" class="ju-code-link ju-constructor"><span class="ju-constructor">,</span></a></span> <span id="prelude:617"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:617" class="ju-code-link ju-var"><span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:617" class="ju-code-link ju-var"><span class="ju-var">v</span></a></span></a></span></span> <span class="ju-keyword">in</span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:613" class="ju-code-link ju-var"><span class="ju-var">map</span></a></span><span class="ju-delimiter">)</span> <span class="ju-delimiter">{</span><br/> <span class="ju-keyword">if</span> <br/> <span class="ju-keyword">|</span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:612" class="ju-code-link ju-var"><span class="ju-var">predicate</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:616" class="ju-code-link ju-var"><span class="ju-var">k</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:617" class="ju-code-link ju-var"><span class="ju-var">v</span></a></span> <span class="ju-keyword">:=</span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:41" class="ju-code-link ju-function"><span class="ju-function">Map<span class="ju-delimiter">.</span>insert</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:616" class="ju-code-link ju-var"><span class="ju-var">k</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:617" class="ju-code-link ju-var"><span class="ju-var">v</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:614" class="ju-code-link ju-var"><span class="ju-var">matching</span></a></span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:2" class="ju-code-link ju-constructor"><span class="ju-constructor">,</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:615" class="ju-code-link ju-var"><span class="ju-var">nonMatching</span></a></span><br/> <span class="ju-keyword">|</span> <span class="ju-keyword">else</span> <span class="ju-keyword">:=</span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:614" class="ju-code-link ju-var"><span class="ju-var">matching</span></a></span><span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Pair/Base.html#Stdlib.Data.Pair.Base:2" class="ju-code-link ju-constructor"><span class="ju-constructor">,</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/Stdlib/Data/Map.html#Stdlib.Data.Map:41" class="ju-code-link ju-function"><span class="ju-function">Map<span class="ju-delimiter">.</span>insert</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:616" class="ju-code-link ju-var"><span class="ju-var">k</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:617" class="ju-code-link ju-var"><span class="ju-var">v</span></a></span> <span class="annot"><a href="https://specs.anoma.net/main/prelude.html#prelude:615" class="ju-code-link ju-var"><span class="ju-var">nonMatching</span></a></span><br/> <span class="ju-delimiter">}</span><span class="ju-delimiter">;</span></pre></code></pre>
mapOption
¶
Apply a partial function to all values in the map, keeping only the entries where the function returns 'some'.
mapOption
{Key Value1 Value2}
{{Ord Key}}
(f : Value1 -> Option Value2)
(map : Map Key Value1)
: Map Key Value2 :=
for (acc := Map.empty) (k, v in map) {
case f v of
| none := acc
| some v' := Map.insert k v' acc
};
mapOptionWithKey
¶
Same as mapOption but allows the function to examine the key as well.
mapOptionWithKey
{Key Value1 Value2}
{{Ord Key}}
(f : Key -> Value1 -> Option Value2)
(map : Map Key Value1)
: Map Key Value2 :=
for (acc := Map.empty) (k, v in map) {
case f k v of
| none := acc
| some v' := Map.insert k v' acc
};
mapEither
¶
Apply a function that returns Either to all values in the map.
mapEither
{Key Value Error Result}
{{Ord Key}}
(f : Value -> Either Error Result)
(map : Map Key Value)
: Pair (Map Key Error) (Map Key Result) :=
for (lefts, rights := Map.empty, Map.empty) (k, v in map) {
case f v of
| error e := Map.insert k e lefts, rights
| ok r := lefts, Map.insert k r rights
};
mapEitherWithKey
¶
Same as mapEither but allows the function to examine the key as well.
mapEitherWithKey
{Key Value Error Result}
{{Ord Key}}
(f : Key -> Value -> Either Error Result)
(map : Map Key Value)
: Pair (Map Key Error) (Map Key Result) :=
for (lefts, rights := Map.empty, Map.empty) (k, v in map) {
case f k v of
| error e := Map.insert k e lefts, rights
| ok r := lefts, Map.insert k r rights
};
Undefined values¶
The term undef
is a placeholder for unspecified values.
undef
¶
axiom undef {A} : A;
TODO
¶
axiom TODO {A} : A;
AVLTree
¶
import Stdlib.Data.Set.AVL as AVLTree public;
open AVLTree using {AVLTree} public;