Skip to content
module arch.system.state.resource_machine.primitive_interfaces.set;

Set primitive interface

A set is an unordered data structure that contains only distinct elements.

The interface

For a set parametrised over the element type T:

  1. new() -> Set - creates an empty set.
  2. new(List) -> Set - creates a set from the given list of elements. If the list contains duplicating elements, ignores them.
  3. size(Set) -> Nat - returns the number of elements in the set.
  4. insert(Set, T) -> Set - adds an element of type T to the set.
  5. union(Set, Set) -> Set - computes the union of two sets.
  6. intersection(Set, Set) -> Set - computes the intersection of two sets.
  7. difference(Set, Set) -> Set - computes the difference of two sets. Note that this operation is not commutative.
  8. disjointUnion(Set, Set) -> Set - computes the union of two sets. If the sets intersect, returns an error.
  9. contains(Set, T) -> Bool - checks if an element is in the set.

classDiagram

    class ISet~T~ {
         <<Interface>>
         new() Set
         new(List) Set
         size(Set) Nat
         insert(Set, T) Set
         union(Set, Set) Set
         intersection(Set, Set) Set
         difference(Set, Set) Set
         disjointUnion(Set, Set) Set
         contains(Set, T) Bool
    }

    class IOrderedSet~T~ {
         <<Interface>>
    }

    ISet <|-- IOrderedSet

    ISet <-- Set

    IOrderedSet <-- OrderedSet

Used in

  1. Transaction (roots, actions)
  2. Nullifier set